LASSO Regression#

Michael J. Pyrcz, Professor, The University of Texas at Austin

Twitter | GitHub | Website | GoogleScholar | Book | YouTube | Applied Geostats in Python e-book | LinkedIn

Chapter of e-book “Applied Machine Learning in Python: a Hands-on Guide with Code”.

Cite this e-Book as:

Pyrcz, M.J., 2024, Applied Machine Learning in Python: a Hands-on Guide with Code, https://geostatsguy.github.io/MachineLearningDemos_Book.

The workflows in this book and more are available here:

Cite the MachineLearningDemos GitHub Repository as:

Pyrcz, M.J., 2024, MachineLearningDemos: Python Machine Learning Demonstration Workflows Repository (0.0.1). Zenodo. DOI

By Michael J. Pyrcz
© Copyright 2024.

This chapter is a tutorial for / demonstration of LASSO Regression.

YouTube Lecture: check out my lectures on:

These lectures are all part of my Machine Learning Course on YouTube with linked well-documented Python workflows and interactive dashboards. My goal is to share accessible, actionable, and repeatable educational content. If you want to know about my motivation, check out Michael’s Story.

Motivations for LASSO Regression#

Here’s a simple workflow, demonstration of ridge regression and comparison to linear regression and ridge regression for machine learning-based predictions. Why start with linear regression?

  • Linear regression is the simplest parametric predictive machine learning model

  • We learn about training machine learning models with an iterative approach, with LASSO we loose the analytical solution of linear and ridge regression

  • Get’s us started with the concepts of loss functions and norms

  • We have access to analytics expressions for confidence intervals for model uncertainty and hypothesis tests for parameter significance

Why also cover ridge regression before LASSO regression?

  • Some times linear regression is not simple enough and we actually need a simpler model!

  • Introduce the concept of model regularization and hyperparameter tuning

Then we cover LASSO regression to learn about the impact of choice of loss function norm on training machine learning models.

  • With LASSO regression we replace the L2 regularization term in the ridge regression loss function with L1 regularization

  • As a result LASSO sequentially shrinks the model parameters to 0.0, resulting in a built in feature selection!

Here’s some basic details about predictive machine learning LASSO regression models, let’s start with linear regression and ridge regression first and build to ridge regression:

Linear Regression#

Linear regression for prediction. Here are some key aspects of linear regression:

Parametric Model

This is a parametric predictive machine learning model, we accept an a prior assumption of linearity and then gain a very low parametric representation that is easy to train without a onerous amount of data.

  • the fit model is a simple weighted linear additive model based on all the available features, \(x_1,\ldots,x_m\).

  • the parametric model takes the form of:

\[ y = \sum_{\alpha = 1}^m b_{\alpha} x_{\alpha} + b_0 \]

Least Squares

The analytical solution for the model parameters, \(b_1,\ldots,b_m,b_0\), is available for the L2 norm loss function, the errors are summed and squared known a least squares.

  • we minimize the error, residual sum of squares (RSS) over the training data:

\[ RSS = \sum_{i=1}^n \left(y_i - (\sum_{\alpha = 1}^m b_{\alpha} x_{\alpha,i} + b_0) \right)^2 \]

where \(y_i\) is the actual response feature values and \(\sum_{\alpha = 1}^m b_{\alpha} x_{\alpha} + b_0\) are the model predictions, over the \(\alpha = 1,\ldots,n\) training data.

  • this may be simplified as the sum of square error over the training data,

\begin{equation} \sum_{i=1}^n (\Delta y_i)^2 \end{equation}

where \(\Delta y_i\) is actual response feature observation \(y_i\) minus the model prediction \(\sum_{\alpha = 1}^m b_{\alpha} x_{\alpha} + b_0\), over the \(i = 1,\ldots,n\) training data.

Assumptions

There are important assumption with our linear regression model,

  • Error-free - predictor variables are error free, not random variables

  • Linearity - response is linear combination of feature(s)

  • Constant Variance - error in response is constant over predictor(s) value

  • Independence of Error - error in response are uncorrelated with each other

  • No multicollinearity - none of the features are redundant with other features

Ridge Regression#

With ridge regression we add a hyperparameter, \(\lambda\), to our minimization, with a shrinkage penalty term, \(\sum_{j=1}^m b_{\alpha}^2\).

\begin{equation} \sum_{i=1}^n \left(y_i - \left(\sum_{\alpha = 1}^m b_{\alpha} x_{\alpha,i} + b_0 \right) \right)^2 + \lambda \sum_{j=1}^m b_{\alpha}^2 \end{equation}

As a result, ridge regression training integrates two and often competing goals to find the model parameters,

  • find the model parameters that minimize the error with training data

  • minimize the slope parameters towards zero

Note: lambda does not include the intercept, \(b_0\).

The \(\lambda\) is a hyperparameter that controls the degree of fit of the model and may be related to the model variance and bias trade-off.

  • for \(\lambda \rightarrow 0\) the solution approaches linear regression, there is no bias (relative to a linear model fit), but the model variance is likely higher

  • as \(\lambda\) increases the model variance decreases and the model bias increases, the model becomes simpler

  • for \(\lambda \rightarrow \infty\) the model parameters \(b_1,\ldots,b_m\) shrink to 0.0 and the model predictions approaches the global mean

LASSO Regression#

For LASSO, similar to ridge regression, we add a hyperparameter \(\lambda\) to our minimization, with a shrinkage penalty term, but we use the L1 norm instead of L2 (sum of absolute values instead of sum of squares).

\[ \sum_{i=1}^n \left(y_i - \left(\sum_{\alpha = 1}^m b_{\alpha} x_{\alpha,i} + b_0 \right) \right)^2 + \lambda \sum_{j=1}^m |b_{\alpha}| \]

As a result, LASSO regression training integrates two and often competing goals to find the model parameters,

  • find the model parameters that minimize the error with training data

  • minimize the slope parameters towards zero

Once again, the only difference between LASSO and ridge regression is:

  • for LASSO the shrinkage term is posed as an \(\ell_1\) penalty,

\[ \lambda \sum_{\alpha=1}^m |b_{\alpha}| \]
  • for ridge regression the shrinkage term is posed as an \(\ell_2\) penalty,

\[ \lambda \sum_{\alpha=1}^m \left(b_{\alpha}\right)^2 \]

While both ridge regression and the lasso shrink the model parameters (\(b_{\alpha}, \alpha = 1,\ldots,m\)) towards zero:

  • LASSO parameters reach zero at different rates for each predictor feature as the lambda, \(\lambda\), hyperparameter increases.

  • as a result the lasso provides a method for feature ranking and selection!

The lambda, \(\lambda\), hyperparameter controls the degree of fit of the model and may be related to the model variance and bias trade-off.

  • for \(\lambda \rightarrow 0\) the prediction model approaches linear regression, there is lower model bias, but the model variance is higher

  • as \(\lambda\) increases the model variance decreases and the model bias increases

  • for \(\lambda \rightarrow \infty\) the coefficients all become 0.0 and the model is the training data response feature mean

Load the Required Libraries#

We will also need some standard packages. These should have been installed with Anaconda 3.

%matplotlib inline                                         
suppress_warnings = False
import os                                                     # to set current working directory 
import numpy as np                                            # arrays and matrix math
import scipy.stats as st                                      # statistical methods
import pandas as pd                                           # DataFrames
import matplotlib.pyplot as plt                               # for plotting
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) # control of axes ticks
from sklearn import metrics                                   # measures to check our models
from sklearn.preprocessing import StandardScaler              # standardize the features
from sklearn import linear_model                              # linear regression
from sklearn.linear_model import Ridge                        # ridge regression implemented in scikit-learn
from sklearn.linear_model import Lasso                        # LASSO regression implemented in scikit-learn
from sklearn.model_selection import cross_val_score           # multi-processor K-fold crossvalidation
from sklearn.model_selection import train_test_split          # train and test split
from IPython.display import display, HTML                     # custom displays
cmap = plt.cm.inferno                                         # default color bar, no bias and friendly for color vision defeciency
plt.rc('axes', axisbelow=True)                                # grid behind plotting elements
if suppress_warnings == True:  
    import warnings                                           # supress any warnings for this demonstration
    warnings.filterwarnings('ignore') 
seed = 13                                                     # random number seed for workflow repeatability

If you get a package import error, you may have to first install some of these packages. This can usually be accomplished by opening up a command window on Windows and then typing ‘python -m pip install [package-name]’. More assistance is available with the respective package docs.

Declare Functions#

Let’s define a function to streamline the addition specified percentiles and major and minor gridlines to our plots.

def weighted_percentile(data, weights, perc):                 # calculate weighted percentile (iambr on StackOverflow @ https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy/32216049) 
    ix = np.argsort(data)
    data = data[ix] 
    weights = weights[ix] 
    cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) 
    return np.interp(perc, cdf, data)

def histogram_bounds(values,weights,color):                   # add uncertainty bounds to a histogram          
    p10 = weighted_percentile(values,weights,0.1); avg = np.average(values,weights=weights); p90 = weighted_percentile(values,weights,0.9)
    plt.plot([p10,p10],[0.0,45],color = color,linestyle='dashed')
    plt.plot([avg,avg],[0.0,45],color = color)
    plt.plot([p90,p90],[0.0,45],color = color,linestyle='dashed')

def add_grid():
    plt.gca().grid(True, which='major',linewidth = 1.0); plt.gca().grid(True, which='minor',linewidth = 0.2) # add y grids
    plt.gca().tick_params(which='major',length=7); plt.gca().tick_params(which='minor', length=4)
    plt.gca().xaxis.set_minor_locator(AutoMinorLocator()); plt.gca().yaxis.set_minor_locator(AutoMinorLocator()) # turn on minor ticks 

def display_sidebyside(*args):                                # display DataFrames side-by-side (ChatGPT 4.0 generated Spet, 2024)
    html_str = ''
    for df in args:
        html_str += df.head().to_html()  # Using .head() for the first few rows
    display(HTML(f'<div style="display: flex;">{html_str}</div>'))

Set the Working Directory#

I always like to do this so I don’t lose files and to simplify subsequent read and writes (avoid including the full address each time). Also, in this case make sure to place the required (see below) data file in this working directory.

#os.chdir("C:\PGE337")                                        # set the working directory

You will have to update the part in quotes with your own working directory and the format is different on a Mac (e.g. “~/PGE”).

Loading Tabular Data#

Here’s the command to load our comma delimited data file in to a Pandas’ DataFrame object.

Let’s load the provided multivariate, spatial dataset ‘unconv_MV.csv’. This dataset has variables from 1,000 unconventional wells including:

  • density (\(g/cm^{3}\))

  • porosity (volume %)

Note, the dataset is synthetic.

We load it with the pandas ‘read_csv’ function into a DataFrame we called ‘my_data’ and then preview it to make sure it loaded correctly.

add_error = True                                              # add random error to the response feature
std_error = 1.0; seed = 71071

yname = 'Porosity'; xname = 'Density'                         # specify the predictor features (x2) and response feature (x1)
xmin = 1.0; xmax = 2.5                                        # set minimums and maximums for visualization 
ymin = 0.0; ymax = 25.0    
xlabel = 'Porosity'; ylabel = 'Density'                       # specify the feature labels for plotting
yunit = '%'; xunit = '$g/cm^{3}$'    
Xlabelunit = xlabel + ' (' + xunit + ')'
ylabelunit = ylabel + ' (' + yunit + ')'

#df = pd.read_csv("Density_Por_data.csv")                     # load the data from local current directory
df = pd.read_csv(r"https://raw.githubusercontent.com/GeostatsGuy/GeoDataSets/master/Density_Por_data.csv") # load the data from my github repo
df = df.sample(frac=1.0, random_state = 73073); df = df.reset_index() # extract 30% random to reduce the number of data

if add_error == True:                                         # method to add error
    np.random.seed(seed=seed)                                 # set random number seed
    df[yname] = df[yname] + np.random.normal(loc = 0.0,scale=std_error,size=len(df)) # add noise
    values = df._get_numeric_data(); values[values < 0] = 0   # set negative to 0 in a shallow copy ndarray

Train-Test Split#

For simplicity we apply a random train-test split with the train_test_split function from scikit-learn package, model_selection module.

x_train, x_test, y_train, y_test = train_test_split(df[xname],df[yname],test_size=0.25,random_state=73073) # train and test split
# y_train = pd.DataFrame({yname:y_train.values}); y_test = pd.DataFrame({yname:y_test.values}) # optional to ensure response is a DataFrame

y = df[yname].values.reshape(len(df))                         # features as 1D vectors
x = df[xname].values.reshape(len(df))

df_train = pd.concat([x_train,y_train],axis=1)                # features as train and test DataFrames
df_test = pd.concat([x_test,y_test],axis=1)

Visualize the DataFrame#

Visualizing the DataFrame is useful first check of the data.

  • many things can go wrong, e.g., we loaded the wrong data, all the features did not load, etc.

We can preview by utilizing the ‘head’ DataFrame member function (with a nice and clean format, see below).

  • we have a custom function to preview the training and testing DataFrames side-by-side.

print('   Training DataFrame      Testing DataFrame')
display_sidebyside(df_train,df_test)
   Training DataFrame      Testing DataFrame
Density Porosity
24 1.778580 11.426485
101 2.410560 8.488544
88 2.216014 10.133693
79 1.631896 12.712326
58 1.528019 16.129542
Density Porosity
59 1.742534 15.380154
1 1.404932 13.710628
35 1.552713 14.131878
92 1.762359 11.154896
22 1.885087 9.403056

Summary Statistics for Tabular Data#

There are a lot of efficient methods to calculate summary statistics from tabular data in DataFrames. The describe command provides count, mean, minimum, maximum in a nice data table.

print('     Training DataFrame         Testing DataFrame')
display_sidebyside(df_train.describe().loc[['count', 'mean', 'std', 'min', 'max']],df_test.describe().loc[['count', 'mean', 'std', 'min', 'max']])
     Training DataFrame         Testing DataFrame
Density Porosity
count 78.000000 78.000000
mean 1.739027 12.501465
std 0.302510 3.428260
min 0.996736 3.276449
max 2.410560 21.660179
Density Porosity
count 27.000000 27.000000
mean 1.734710 12.380796
std 0.247761 2.916045
min 1.067960 7.894595
max 2.119652 18.133771

Visualize the Data#

Let’s check the consistency and coverage of training and testing with histograms and scatter plots.

  • check to make sure the train and test data cover the range of possible predictor feature combinations

  • ensure we are not extrapolating beyond the training data with the testing cases

nbins = 20                                                    # number of histogram bins

plt.subplot(131)
freq1,_,_ = plt.hist(x=df_train[xname],weights=None,bins=np.linspace(xmin,xmax,nbins),alpha = 0.6,
                     edgecolor='black',color='darkorange',density=True,label='Train')
freq2,_,_ = plt.hist(x=df_test[xname],weights=None,bins=np.linspace(xmin,xmax,nbins),alpha = 0.6,
                     edgecolor='black',color='red',density=True,label='Test')
max_freq = max(freq1.max()*1.10,freq2.max()*1.10)
plt.xlabel(xname + ' (' + xunit + ')'); plt.ylabel('Frequency'); plt.ylim([0.0,max_freq]); plt.title('Density'); add_grid()  
plt.xlim([xmin,xmax]); plt.legend(loc='upper right')   

plt.subplot(132)
freq1,_,_ = plt.hist(x=df_train[yname],weights=None,bins=np.linspace(ymin,ymax,nbins),alpha = 0.6,
                     edgecolor='black',color='darkorange',density=True,label='Train')
freq2,_,_ = plt.hist(x=df_test[yname],weights=None,bins=np.linspace(ymin,ymax,nbins),alpha = 0.6,
                     edgecolor='black',color='red',density=True,label='Test')
max_freq = max(freq1.max()*1.10,freq2.max()*1.10)
plt.xlabel(yname + ' (' + yunit + ')'); plt.ylabel('Frequency'); plt.ylim([0.0,max_freq]); plt.title('Porosity'); add_grid()  
plt.xlim([ymin,ymax]); plt.legend(loc='upper right')   

plt.subplot(133)                                              # plot the model
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.title('Porosity vs Density')
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

plt.subplots_adjust(left=0.0, bottom=0.0, right=2.5, top=0.8, wspace=0.3, hspace=0.2)
#plt.savefig('Test.pdf', dpi=600, bbox_inches = 'tight',format='pdf')   
plt.show()
_images/5b05cb262eae870fcf0fbdc38b30d735f1ba904bea3aac629d825e939d486c28.png

Linear Regression Model#

Let’s first calculate the linear regression model. We use scikit learn and then extend the same workflow to ridge regression.

  • we are building a model, \(\phi = f(\rho)\), where \(\phi\) is porosity and \(\rho\) is density.

  • we could also say, we have “porosity regressed on density”.

Our model has this specific equation,

\[ \phi = b_1 \times \rho + b_0 \]
linear_reg = linear_model.LinearRegression()                  # instantiate the model

linear_reg.fit(df_train[xname].values.reshape(len(df_train),1), df_train[yname]) # train the model parameters
x_model = np.linspace(xmin,xmax,10)
y_model_linear = linear_reg.predict(x_model.reshape(-1, 1))   # predict at the withheld test data 

plt.subplot(111)                                              # plot the data, model with model parameters
plt.plot(x_model,y_model_linear, color='red', linewidth=2,label='Linear Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.annotate('Linear Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(linear_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(linear_reg.intercept_,2)),[1.97,16])
plt.title('Linear Regression Model, Porosity = f(Density)')
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.2, hspace=0.2); plt.show()
_images/bed1e4c1d09a0f489bb51ecf2a390fd0ebd2683139e25747abe6bb9422957cc5.png

You may have noticed the additional reshape operation applied to the predictor feature in the predict function.

y_linear_model = linear_reg.predict(x_model.reshape(-1, 1))   # predict at the withheld test data 

This is needed because scikit-learn assumes more than one predictor feature; therefore, expects a 2D array of samples (rows) and features (columns), but we have only a 1D vector.

  • the reshape operation turns the 1D vector into a 2D vector with only 1 column

Linear Regression Model Checks#

Let’s run some quick model checks. Much more could be done, but I limit this for brevity here.

  • see the Linear Regression chapter for more information and checks

y_pred_linear = linear_reg.predict(df_test[xname].values.reshape(len(df_test),1)) # predict at test data
r_squared_linear = metrics.r2_score(df_test[yname].values, y_pred_linear)

plt.subplot(121)                                              # plot testing diagnostics 
plt.plot(x_model,y_model_linear, color='red', linewidth=2,label='Linear Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
# plt.scatter(df_test[xname], y_pred,color='grey',edgecolor='black',s = 40, alpha = 1.0, label = 'predictions',zorder=100)
plt.scatter(df_test[xname], y_pred_linear,color='white',s=120,marker='o',linewidths=1.0, edgecolors="black",zorder=300)
plt.scatter(df_test[xname], y_pred_linear,color='red',s=90,marker='*',linewidths=0.5, edgecolors="black",zorder=320,label='Predictions')

plt.annotate('Linear Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(linear_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(linear_reg.intercept_,2)),[1.97,16])
plt.annotate(r'$r^2$ :' + str(np.round(r_squared_linear,2)),[1.97,15])
plt.title('Linear Regression Model, Porosity = f(Density)')
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

y_res_linear = y_pred_linear - df_test['Porosity'].values     # calculate the test residual

plt.subplot(122)
plt.hist(y_res_linear, color = 'red', alpha = 0.8, edgecolor = 'black', bins = np.linspace(-5,5,20))
plt.title("Error Residual at Testing Data"); plt.xlabel(yname + ' True - Estimate (%)');plt.ylabel('Frequency')
plt.vlines(0,0,5.5,color='black',ls='--',lw=2)
plt.annotate('Test Error Residual:',[-4,4.7]) # add residual summary statistics
plt.annotate(r'$\overline{\Delta{y}}$: ' + str(round(np.average(y_res_linear),2)),[-4,4.4])
plt.annotate(r'$\sigma_{\Delta{y}}$: ' + str(np.round(np.std(y_res_linear),2)),[-4,4.1])
add_grid(); plt.xlim(-5,5); plt.ylim(0,5.5)

plt.subplots_adjust(left=0.0, bottom=0.0, right=2.2, top=1.2, wspace=0.2, hspace=0.2); plt.show()
_images/c77e7f7dba894c64d292cfc9ca858a37615ac34cb3971d8f9493ee9350fa3f54.png

Ridge Regression Model#

Let’s replace the scikit-learn linear regression method with the scikit-learn ridge regression method.

  • note, we must now set the \(\lambda\) hyperparameter.

  • in scikit-learn the hyperparameter(s) is(are) set with the instantiation of the model

lam = 1.0                                                     # lambda hyperparameter

ridge_reg = Ridge(alpha=lam)                                  # instantiate the model

ridge_reg.fit(df_train[xname].values.reshape(len(df_train),1), df_train[yname]) # train the model parameters
x_model = np.linspace(xmin,xmax,10)
y_model_ridge = ridge_reg.predict(x_model.reshape(10,1)) # predict with the fit model

plt.subplot(111)                                              # plot the data, model with model parameters
plt.plot(x_model,y_model_ridge, color='red', linewidth=2,label='Ridge Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.annotate('Ridge Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(ridge_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(ridge_reg.intercept_,2)),[1.97,16])
plt.title('Ridge Model, Regression of ' + yname + ' on ' + xname + ' with a $\lambda = $' + str(lam))
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.2, hspace=0.2); plt.show()
_images/00e5ed1c33b653d63cf4625df987255833a6a6e7b6c4457a589677352282acdd.png

Let’s repeat the simple model checks that we applied with our linear regression model.

y_pred_ridge = ridge_reg.predict(df_test[xname].values.reshape(len(df_test),1)) # predict at test data
r_squared = metrics.r2_score(df_test[yname].values, y_pred_ridge)

plt.subplot(121)                                              # plot testing diagnostics 
plt.plot(x_model,y_model_ridge, color='red', linewidth=2,label='Ridge Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.scatter(df_test[xname], y_pred_ridge,color='white',s=120,marker='o',linewidths=1.0, edgecolors="black",zorder=300)
plt.scatter(df_test[xname], y_pred_ridge,color='red',s=90,marker='*',linewidths=0.5, edgecolors="black",zorder=320,label='Predictions')

plt.annotate('Ridge Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(ridge_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(ridge_reg.intercept_,2)),[1.97,16])
plt.title('Ridge Model, Regression of ' + yname + ' on ' + xname + ' with a $\lambda = $' + str(lam))
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

y_res_ridge = y_pred_ridge - df_test['Porosity'].values       # calculate the test residual

plt.subplot(122)
plt.hist(y_res_ridge, color = 'red', alpha = 0.8, edgecolor = 'black', bins = np.linspace(-5,5,20))
plt.title("Error Residual at Testing Data"); plt.xlabel(yname + ' True - Estimate (%)');plt.ylabel('Frequency')
plt.vlines(0,0,5.5,color='black',ls='--',lw=2)
plt.annotate('Test Error Residual:',[-4,4.7]) # add residual summary statistics
plt.annotate(r'$\overline{\Delta{y}}$: ' + str(round(np.average(y_res_ridge),2)),[-4,4.4])
plt.annotate(r'$\sigma_{\Delta{y}}$: ' + str(np.round(np.std(y_res_ridge),2)),[-4,4.1])
add_grid(); plt.xlim(-5,5); plt.ylim(0,5.5)

plt.subplots_adjust(left=0.0, bottom=0.0, right=2.2, top=1.2, wspace=0.3, hspace=0.2); plt.show()
_images/e9fddf6414f66b18c21b730919e3c9b753e9f8cc3664d1ea2de8073a3922ea1e.png

Interesting, we explained less variance and have a larger residual standard deviation (more error).

  • ridge regression for our arbitrarily selected hyperparameter, \(\lambda\), actually reduced both testing variance explained and accuracy

  • this is not surprising, we are not actually tuning the hyperparameter to get the best model!

LASSO Regression Model#

Let’s replace the scikit learn linear regression and ridge regression methods with the scikit learn the LASSO regression method. Note, once again must now set the lambda hyperparameter.

  • recall, the lambda hyperparameter \(\lambda\) is set with the instantiation of the model

lam = 0.1                                                     # lambda hyperparameter

lasso_reg = Lasso(alpha=lam)                                  # instantiate the model

lasso_reg.fit(df_train[xname].values.reshape(len(df_train),1), df_train[yname]) # train the model parameters
x_model = np.linspace(xmin,xmax,10)
y_model_lasso = lasso_reg.predict(x_model.reshape(10,1))      # predict with the fit model

plt.subplot(111)                                              # plot the data, model with model parameters
plt.plot(x_model,y_model_lasso, color='red', linewidth=2,label='LASSO Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.annotate('LASSO Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(lasso_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(lasso_reg.intercept_,2)),[1.97,16])
plt.title('LASSO Model, Regression of ' + yname + ' on ' + xname + ' with a $\lambda = $' + str(lam))
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.2, hspace=0.2); plt.show()
_images/fc905fb342871dd4da4ae71bef01ac90b175345d9b4bde5ed752de9c810ed5c6.png

Let’s repeat the simple model checks that we applied with our linear regression model.

LASSO Hyperparameter Tuning#

Above we just selected an arbitrary \(\lambda\) hyperparameter, now let’s do hyperparameter tuning.

  • summarize MSE over k-folds in cross validation while looping over a wide variety of \(\lambda\) values

score = []                                                    # code modified from StackOverFlow by Dimosthenis

nlambda = 100
lambda_mat = np.logspace(-2,5,nlambda)
for ilam in range(0,nlambda):
    lasso_reg = Lasso(alpha=lambda_mat[ilam])
    scores = cross_val_score(estimator=lasso_reg, X= df['Density'].values.reshape(-1, 1), 
                             y=df['Porosity'].values, cv=10, n_jobs=4, scoring = "neg_mean_squared_error") # Perform 10-fold cross validation
    score.append(abs(scores.mean()))

plt.subplot(111)
plt.plot(lambda_mat, score,  color='black', linewidth = 3, label = 'Test MSA',zorder=10)
plt.title('LASSO Regression Test Mean Square Error vs. Lambda Hyperparameter'); plt.xlabel('Lambda'); plt.ylabel('Test Mean Square Error')
plt.xlim(1.0e-2,1.0e5); plt.ylim(0.001,20.0); plt.xscale('log')
plt.vlines(0.1,0,20,color='red',lw=2); plt.vlines(0.9,0,20,color='red',lw=2,zorder=10)
plt.annotate('Linear Regression',[0.075,12.5],rotation=90.0,color='red',zorder=10)
plt.annotate('Mean',[1.06,14.5],rotation=90.0,color='red',zorder=10)
plt.fill_between([0.01,0.1],[0,0],[20,20],color='grey',alpha=0.3,zorder=1)
plt.fill_between([0.9,100000],[0,0],[20,20],color='grey',alpha=0.3,zorder=1)
plt.grid(which='both')
plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.0, wspace=0.2, hspace=0.2); plt.show()
_images/1de2b25902af804bde4d0c3b8c44a92fc63819375ac4ec48ac603603f9d858de.png

From the above we observe that any \(\lambda > 0.1\) results in the minimum test mean square error.

  • the threshold behavior is due to the fact that below this level of regularization, the model is behaving like linear regression.

Let’s now train a model with this hyperparameter on all the data.

lam = 0.01                                                      # tuned hyperparameter
lasso_tuned = Lasso(alpha=lam)                                  # instantiate the model
lasso_tuned.fit(df[xname].values.reshape(len(df),1), df[yname]) # train the model parameters on all data

y_pred_lasso_tuned = lasso_tuned.predict(df_test[xname].values.reshape(len(df_test),1)) # predict at test data
r_squared = metrics.r2_score(df_test[yname].values, y_pred_lasso_tuned)

plt.subplot(121)                                              # plot testing diagnostics 
plt.plot(x_model,y_model_lasso, color='red', linewidth=2,label='LASSO Regression',zorder=100)
plt.scatter(df_train[xname],df_train[yname],s=40,marker='o',color = 'darkorange',alpha = 0.8,edgecolor = 'black',zorder=10,label='Train')
plt.scatter(df_test[xname],df_test[yname],s=40,marker='o',color = 'red',alpha = 0.8,edgecolor = 'black',zorder=10,label='Test')
plt.scatter(df_test[xname], y_pred_ridge,color='white',s=120,marker='o',linewidths=1.0, edgecolors="black",zorder=300)
plt.scatter(df_test[xname], y_pred_ridge,color='red',s=90,marker='*',linewidths=0.5, edgecolors="black",zorder=320,label='Predictions')

plt.annotate('LASSO Regression Model Parameters:',[1.86,18]) # add the model to the plot
plt.annotate(r'$b_1$ :' + str(np.round(ridge_reg.coef_ [0],2)),[1.97,17])
plt.annotate(r'$b_0$ :' + str(np.round(ridge_reg.intercept_,2)),[1.97,16])
plt.title('Tuned LASSO Model, Regression of ' + yname + ' on ' + xname + ' with a $\lambda = $' + str(lam))
plt.xlabel(xname + ' (' + xunit + ')')
plt.ylabel(yname + ' (' + yunit + ')')
plt.legend(loc='upper right'); add_grid(); plt.xlim([xmin,xmax]); plt.ylim([ymin,ymax])

y_res_ridge = y_pred_ridge - df_test['Porosity'].values       # calculate the test residual

plt.subplot(122)
plt.hist(y_res_ridge, color = 'red', alpha = 0.8, edgecolor = 'black', bins = np.linspace(-5,5,20))
plt.title("Error Residual at Testing Data"); plt.xlabel(yname + ' True - Estimate (%)');plt.ylabel('Frequency')
plt.vlines(0,0,5.5,color='black',ls='--',lw=2)
plt.annotate('Test Error Residual:',[-4,4.7]) # add residual summary statistics
plt.annotate(r'$\overline{\Delta{y}}$: ' + str(round(np.average(y_res_ridge),2)),[-4,4.4])
plt.annotate(r'$\sigma_{\Delta{y}}$: ' + str(np.round(np.std(y_res_ridge),2)),[-4,4.1])
add_grid(); plt.xlim(-5,5); plt.ylim(0,5.5)

plt.subplots_adjust(left=0.0, bottom=0.0, right=2.2, top=1.2, wspace=0.3, hspace=0.2); plt.show()
_images/d2f8405e28e0899827ae13f98a0ea60cc3198ccf94b0f5d190d54d75421e3001.png

With our tuned \(\lambda\) hyperparameter,

lam = 0.01

our model is the same as linear regression.

  • could we create a situation where the best model is not linear regression? I.e., were regularization is helpful?

  • yes, we can. Let’s remove most the samples to create data paucity and add a lot of noise!

Admittedly, I iterated the random seeds for the sample and noise to get this result.

  • few data (low \(n\)) and high dimensionality (high \(m\)) will generally result in LASSO outperforming linear regression

df_sample = df.copy(deep=True).sample(n=10,random_state=11)
noise_stdev = 3.0
np.random.seed(seed=15)
df_sample['Porosity'] = df_sample['Porosity'] + np.random.normal(0.0, noise_stdev, size=len(df_sample))

score = []                                                    # code modified from StackOverFlow by Dimosthenis

nlambda = 100
lambda_mat = np.logspace(-3,5,nlambda)
for ilam in range(0,nlambda):
    lasso_reg = Lasso(alpha=lambda_mat[ilam])
    scores = cross_val_score(estimator=lasso_reg, X= df_sample['Density'].values.reshape(-1, 1), 
                             y=df_sample['Porosity'].values, cv=2, n_jobs=4, scoring = "neg_mean_squared_error") # Perform 10-fold cross validation
    score.append(abs(scores.mean()))

plt.subplot(111)
plt.plot(lambda_mat, score,  color='black', linewidth = 3, label = 'Test MSA',zorder=10)
plt.title('LASSO Regression Test Mean Square Error vs. Lambda Hyperparameter'); plt.xlabel('Lambda'); plt.ylabel('Test Mean Square Error')
plt.xlim(1.0e-3,1.0e5); plt.ylim(0.001,20.0); 
plt.xscale('log')
plt.vlines(0.003,0,20,color='red',lw=2); plt.vlines(0.4,0,20,color='red',lw=2,zorder=10); plt.vlines(0.1,0,20,color='red',lw=2,zorder=10);
plt.annotate('Linear Regression',[0.0022,12.5],rotation=90.0,color='red',zorder=10)
plt.annotate(r'LASSO Tuned $\lambda$',[0.075,12.5],rotation=90.0,color='red',zorder=10)
plt.annotate('Mean',[0.46,14.5],rotation=90.0,color='red',zorder=10)
plt.fill_between([0.001,0.003],[0,0],[20,20],color='grey',alpha=0.3,zorder=1)
plt.fill_between([0.4,100000],[0,0],[20,20],color='grey',alpha=0.3,zorder=1)
plt.grid(which='both')
plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.0, wspace=0.2, hspace=0.2); plt.show()
_images/b3216311ed08cf8296a22124abfc14456cb42382fc838306e6faa4b0e7c9b7f4.png

Investigating the Impact of Lambda Hyperparameter on Model Parameters#

Let’s look at the multivariate dataset that we already loaded. This way we can observe the model behavior over a range of features, for a range of lambda hyperparameter values. We are going to perform regular steps to get to the punch line!

  • load a multivariate dataset

  • calculate summary statistics

  • standardize the features

Then we will vary the hyperparameter and observe the model parameters.

Load a Multivariate Dataset#

Let’s load a dataset with more variables to demonstrate feature ranking with LASSO regression and to compare the behavior in the model parameters over hyperparameter values. The dataset ‘unconv_MV_v5.csv’, is a comma delimited file based on 1,000 unconventional wells including the features,

  • well average porosity

  • log transform of permeability (to linearize the relationships with other variables)

  • acoustic impedance (kg/m^3 x m/s x 10^6)

  • brittleness ratio (%)

  • total organic carbon (%)

  • vitrinite reflectance (%)

  • initial production 90 day average (MCFPD).

we assume initial production is the response feature and all other features are predictor features.

Also, you can try another similar dataset by toggling the mv_data integer to 1.

mv_data = 2

if mv_data == 1:
    df_mv = pd.read_csv(r"https://raw.githubusercontent.com/GeostatsGuy/GeoDataSets/master/unconv_MV.csv")
    df_mv = df_mv.drop('WellIndex',axis = 1)                  # remove the well index feature
elif mv_data == 2:
    df_mv = pd.read_csv(r"https://raw.githubusercontent.com/GeostatsGuy/GeoDataSets/master/unconv_MV_v5.csv")
    df_mv = df_mv.rename({'Prod':'Production'},axis=1)
    df_mv = df_mv.drop('Well',axis = 1)                       # remove the well index feature
df_mv.head()                                                  # load the comma delimited data file
Por Perm AI Brittle TOC VR Production
0 12.08 2.92 2.80 81.40 1.16 2.31 4165.196191
1 12.38 3.53 3.22 46.17 0.89 1.88 3561.146205
2 14.02 2.59 4.01 72.80 0.89 2.72 4284.348574
3 17.67 6.75 2.63 39.81 1.08 1.88 5098.680869
4 17.52 4.57 3.18 10.94 1.51 1.90 3406.132832

Calculate Summary Statistics#

Let’s calculate the summary statistics for our multivariate data.

df_mv.describe().transpose()
count mean std min 25% 50% 75% max
Por 200.0 14.991150 2.971176 6.550000 12.912500 15.070000 17.402500 23.550000
Perm 200.0 4.330750 1.731014 1.130000 3.122500 4.035000 5.287500 9.870000
AI 200.0 2.968850 0.566885 1.280000 2.547500 2.955000 3.345000 4.630000
Brittle 200.0 48.161950 14.129455 10.940000 37.755000 49.510000 58.262500 84.330000
TOC 200.0 0.990450 0.481588 -0.190000 0.617500 1.030000 1.350000 2.180000
VR 200.0 1.964300 0.300827 0.930000 1.770000 1.960000 2.142500 2.870000
Production 200.0 4311.219852 992.038414 2107.139414 3618.064513 4284.687348 5086.089761 6662.622385

Standardize the Features#

Let’s standardize the feature to have:

  • mean = 0.0

  • variance = standard deviation = 1.0

We do this so the model parameters will similar ranges and will be comparable, i.e., like \(\beta\) vs. \(B\) coefficients for feature ranking.

To do this we:

  1. instantiate the StandardScaler from scikit learn. We assign it as ‘scaler’ so we can use it to conveniently reverse the transformation if we like. We will need to do that to get our predictions back into regular production units.

scaler = StandardScaler()
  1. we then extract all the values from our DataFrame and apply the by-column standardization. The result is a 2D ndarray

sfeatures = scaler.fit_transform(df_mv.values)
  1. we make an new empty DataFrame

df_nmv = pd.DataFrame()
  1. then we add the transformed value to the new DataFrame while keeping the sample index and feature names from the old DataFramae

df_nmv = pd.DataFrame(sfeatures, index=df_mv.index, columns=df_mv.columns)
scaler = StandardScaler()                                     # instantiate the scaler 

sfeatures = scaler.fit_transform(df_mv.values)                # standardize all the values extracted from the DataFrame 
df_nmv = pd.DataFrame()                                       # instantiate a new DataFrame
df_nmv = pd.DataFrame(sfeatures, index=df_mv.index, columns=df_mv.columns) # copy the standardized values into the new DataFrame
df_nmv.head()                                                 # preview the new DataFrame
Por Perm AI Brittle TOC VR Production
0 -0.982256 -0.817030 -0.298603 2.358297 0.352948 1.152048 -0.147565
1 -0.881032 -0.463751 0.444147 -0.141332 -0.209104 -0.280931 -0.757991
2 -0.327677 -1.008148 1.841224 1.748113 -0.209104 2.518377 -0.027155
3 0.903875 1.401098 -0.599240 -0.592585 0.186414 -0.280931 0.795773
4 0.853263 0.138561 0.373409 -2.640962 1.081534 -0.214280 -0.914640

Check Summary Statistics#

Let’s check the summary statistics.

df_nmv.describe().transpose()                                 # summary statistics from the new DataFrame
count mean std min 25% 50% 75% max
Por 200.0 2.486900e-16 1.002509 -2.848142 -0.701361 0.026605 0.813617 2.887855
Perm 200.0 -6.217249e-17 1.002509 -1.853701 -0.699753 -0.171282 0.554098 3.208033
AI 200.0 4.130030e-16 1.002509 -2.986650 -0.745137 -0.024493 0.665203 2.937664
Brittle 200.0 2.042810e-16 1.002509 -2.640962 -0.738391 0.095646 0.716652 2.566186
TOC 200.0 3.375078e-16 1.002509 -2.457313 -0.776361 0.082330 0.748466 2.476256
VR 200.0 9.081624e-16 1.002509 -3.446814 -0.647507 -0.014330 0.593853 3.018254
Production 200.0 1.598721e-16 1.002509 -2.227345 -0.700472 -0.026813 0.783049 2.376222

Success, we have all features standardized. We are ready to build our model. Let’s extract training and testing datasets.

X_train, X_test, y_train, y_test = train_test_split(df_nmv.iloc[:,:6], pd.DataFrame({'Production':df_nmv['Production']}), 
                                                    test_size=0.33, random_state=73073)
print('Number of training data = ' + str(len(X_train)) + ' and number of testing data = ' + str(len(X_test)))
Number of training data = 134 and number of testing data = 66

Vary the Hyperparameter and Observe the Model Parameters#

Now let’s observe the model coefficients (\(b_{\alpha}, \alpha = 1,\ldots,m\)) for a range of \(\lambda\) hyperparameter values.

nbins = 1000                                                # number of bins to explore the hyperparameter 
df_nmv.describe().transpose()                               # summary statistics from the new DataFrame
lams = np.linspace(0.001,1.0,nbins)                         # make a list of lambda values
coefs = np.ndarray((nbins,6))

index = 0
for lam in lams:
    lasso_reg = Lasso(alpha=lam)                            # instantiate the model
    lasso_reg.fit(X_train, y_train)                         # fit model
    coefs[index,:] = lasso_reg.coef_                        # retrieve the coefficients
    index = index + 1
    
color = ['black','blue','green','red','orange','grey']
plt.subplot(111)                                            # plot the results
for ifeature in range(0,6):
    plt.semilogx(lams,coefs[:,ifeature], label = df_mv.columns[ifeature], c = color[ifeature], linewidth = 3.0)

plt.title('Standardized Model Coefficients vs. Lambda Hyperparameter'); plt.xlabel('Lambda Hyperparameter'); plt.ylabel('Standardized Model Coefficients')
plt.xlim(0.001,1); plt.ylim(-1.0,1.0); plt.grid(); plt.legend(loc = 'lower right')
plt.grid(which='both')

plt.subplots_adjust(left=0.0, bottom=0.0, right=1.5, top=1., wspace=0.2, hspace=0.2); plt.show()
_images/6a891e4fc657e21911bd4c2728d73782f8958f164ab69767be62f1d8e8cf4277.png

What do we see?

  • for a very low lambda value, all features are included

  • as we increase the lambda hyperparameter, total organic carbon is the first predictor feature to be removed

  • then acoustic impedance, vitrinite reflectance, brittleness, log perm and finally porosity.

  • at \(\lambda \ge 0.8\) all features are removed.

Let’s repeat this workflow with ridge regression for a comparison.

nbins = 5000                                                # number of bins to explore the hyperparameter 
lams = np.logspace(-10,7,nbins)       
ridge_coefs = np.ndarray((nbins,6))

index = 0
for lam in lams:
    ridge_reg = Ridge(alpha=lam)
    ridge_reg.fit(X_train, y_train) # fit model
    ridge_coefs[index,:] = ridge_reg.coef_
    index = index + 1
    
color = ['black','blue','green','red','orange','grey']
plt.subplot(111)
for ifeature in range(0,6):
    plt.semilogx(lams,ridge_coefs[:,ifeature], label = df_mv.columns[ifeature], c = color[ifeature], linewidth = 3.0)

plt.title('Standardized Model Coefficients vs. Lambda Hyperparameter'); plt.xlabel('Lambda Hyperparameter'); plt.ylabel('Standardized Model Coefficients')
plt.xlim(1.0e-10,1.0e7); plt.ylim(-1.0,1.0); plt.grid(); plt.legend(loc = 'lower right')

plt.subplots_adjust(left=0.0, bottom=0.0, right=1.5, top=1., wspace=0.2, hspace=0.2)
plt.show()
_images/14933451d3e4453a6de9f848690dc6eabdc832ec3873b9f58b37ee6287375171.png

Ridge regression is quite different in the response of predictor feature to change in the \(\lambda\) hyperparameter.

  • there is no selective removal of predictor features as the \(\lambda\) hyperparameter increases

  • a major component is uniform shrinkage of all coefficients towards zero for \(\lambda \in [10^1, 10^5]\)

Comments#

I hope you found this chapter helpful. Much more could be done and discussed, I have many more resources. Check out my shared resource inventory,

Michael

The Author:#

Michael Pyrcz, Professor, The University of Texas at Austin Novel Data Analytics, Geostatistics and Machine Learning Subsurface Solutions

With over 17 years of experience in subsurface consulting, research and development, Michael has returned to academia driven by his passion for teaching and enthusiasm for enhancing engineers’ and geoscientists’ impact in subsurface resource development.

For more about Michael check out these links:

Twitter | GitHub | Website | GoogleScholar | Book | YouTube | Applied Geostats in Python e-book | LinkedIn#

Want to Work Together?#

I hope this content is helpful to those that want to learn more about subsurface modeling, data analytics and machine learning. Students and working professionals are welcome to participate.

  • Want to invite me to visit your company for training, mentoring, project review, workflow design and / or consulting? I’d be happy to drop by and work with you!

  • Interested in partnering, supporting my graduate student research or my Subsurface Data Analytics and Machine Learning consortium (co-PI is Professor John Foster)? My research combines data analytics, stochastic modeling and machine learning theory with practice to develop novel methods and workflows to add value. We are solving challenging subsurface problems!

  • I can be reached at mpyrcz@austin.utexas.edu.

I’m always happy to discuss,

Michael

Michael Pyrcz, Ph.D., P.Eng. Professor, Cockrell School of Engineering and The Jackson School of Geosciences, The University of Texas at Austin

More Resources Available at: Twitter | GitHub | Website | GoogleScholar | Book | YouTube | Applied Geostats in Python e-book | LinkedIn#